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Density functional theory of solvation in a polar solvent: Extracting the functional
from homogeneous solvent simulations
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In the density functional theory formulation of molecular solvents, the solvation free energy of a solute can
be obtained directly by minimization of a functional, instead of the thermodynamic integration scheme neces-
sary when using atomistic simulations. In the homogeneous reference fluid approximation, the expression of
the free-energy functional relies on the direct correlation function of the pure solvent. To obtain that function
as exactly as possible for a given atomistic solvent model, we propose the following approach: first to perform
molecular simulations of the homogeneous solvent and compute the position and angle-dependent two-body
distribution functions, and then to invert the Ornstein-Zernike relation using a finite rotational invariant basis
set to get the corresponding direct correlation function. This rather natural scheme is proved, for the first time
to our knowledge, to be valuable for a dipolar solvent involving long range interactions. The resulting solvent
free-energy functional can then be minimized on a three-dimensional grid around a solute to get the solvent
particle and polarization density profiles and solvation free energies. The viability of this approach is proven in
a comparison with ‘‘exact’’ molecular dynamics calculations for the simple test case of spherical ions in a
dipolar solvent.
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I. INTRODUCTION

The determination of the solvation free energy of comp
solutes in molecular solvents is a problem of primary imp
tance in physico chemistry and biology. From the theoret
point of view, two extreme strategies can be found in
literature. A first class of methods relies on the assump
that the macroscopic laws of electrostatics remain valid
microscopic level, and that solvation free energies can
computed by combining a dielectric continuum descript
of the solvent outside the solute core and a simple solv
accessible surface area expression for the nonelectros
contributions @1#. For the electrostatic part, the stationa
Poisson equation can be solved using sharp definitions o
dielectric boundaries and various efficient numerical te
niques@2#, including recent methods based on the minimiz
tion of polarization density@3# or polarization charges@4#
free-energy functionals. There are serious limitations, ho
ever, to a continuum dielectric approach; first of all the v
lidity of the macroscopic electrostatic laws at microsco
distances and the neglect of the molecular nature of the
vent. Another standard route for computing solvation fr
energies consists in using molecular simulation techniq
such as molecular dynamics~MD! or Monte Carlo~MC!,
with an explicit molecular solvent; for example, the SPC
TIP4P models for water. This way, the solute and the solv
are treated in a consistent way, with a realistic molecu
force field. There are a number of well-established statist
mechanics techniques to estimate absolute or relative
energies by molecular simulations@5#, for example, thermo-
dynamic integration methods based on umbrella samp
@6,7#, or generalized constraints@8,9#. In any case, the pre
1063-651X/2002/66~3!/031206~8!/$20.00 66 0312
x
-
l

e
n
a
e

t-
tic

he
-
-

-
-

l-
e
s

r
nt
r

al
ee

g

cise estimation of free energies by computer simulation
mains extremely costly; it requires one to consider a su
ciently large number of solvent molecules around t
molecular solute and, for this large system, to averag
‘‘generalized force’’ over many microscopic solvent config
rations, and this for a lot of different points along the reve
ible thermodynamic integration path.

In this context, it is desirable to devise methods which~i!
are able to cope with the molecular nature of the solvent,
without considering explicitly all its instantaneous micr
scopic degrees of freedom, and~ii ! can provide solvation
properties at a modest computer cost compared to exp
simulations. Among various possible theoretical approach
one should mention molecular integral equation theor
@10–18#, and their three-dimensional implementation arou
complex solutes@19,20#, and the density functional theor
~DFT! of molecular liquids@21–25#, which will be the focus
of the present paper. The ‘‘classical’’ density function
theory has many points in common with the DFT of ele
trons in electronic structure problems. It has been used
tensively for the description of atomic liquids at interfac
@26#, and more recently of molecular liquids@27–31#. The
essence of the theory is the following: For an atomic flu
submitted to an arbitrary external potentialv(r ), the grand
potential can be written as a functional of the one-parti
density r(r ), which is minimum for the thermodynami
equilibrium densityreq(r ). In particular, the so-called exces
free-energy contribution, due to the intrinsic interactio
within the fluid, appears also as a unique functional ofr(r ),
independent of the applied external field, and its knowled
characterizes the fluid completely. Of course, this exc
free-energy functional is not known, but valuable approxim
©2002 The American Physical Society06-1
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tions can be proposed. The rigorous definition of the exc
functional involves the direct correlation function~the c
function! of the inhomogeneous fluid, which is connected
the pair correlation function~the h function! through the
Ornstein-Zernike~OZ! equation. A tempting approximatio
is thus to replace the inhomogeneous direct correlation fu
tion by that of a homogeneous reference fluid. This was d
in Ref. @29# where the authors use a semiphenomenolog
description of the direct correlation functions in inhomog
neous ionic solutions using homogeneous MSA integ
equation expressions. A similar approximation was also
veloped in Refs.@30,31# for dipolar fluids. There the direc
correlation of the isotropic fluid is inferred from RHNC in
tegral equation theory, and then injected into a density fu
tional to predict the phase behavior of the fluid. Instead
approximate integral equations inputs, an exact descrip
of the correlation function can also be achieved by sim
extracting it from a fully molecular simulation of the homo
geneous solvent at given thermodynamic conditions. T
latter strategy has been largely unexplored, except for h
ellipsoid fluids with short-range anisotropic repulsive inte
actions@32#, and it is the purpose of this work to develop
for polar solvents.

We thus propose the following general scheme. Fo
given solvent model at given thermodynamic conditions,
tensive MD simulations of the homogeneous system are
formed and the position- and orientation-dependent pair
relation function is computed. The Ornstein-Zernike integ
equation is then inverted to yield the direct correlation fun
tion. This function is then injected into the expression of t
free-energy functional that describes the solvent particle
orientation density in the presence of any external field
particular, a dissolved molecule. Minimization of the fun
tional gives the equilibrium solvent density profile arou
the solute and its solvation free energy. To assess the val
of the method, the functional results can be compared
those of a molecular dynamics simulation of the solvent
the presence of the solute. In this case, the computatio
the solvation free energy requires the definition of a reve
ible thermodynamic path, for example, a gradual growth
the solute inside the solvent.

Although the method is of general content and our u
mate goal is to provide a convincing free-energy functio
for liquid water, even in a simplified quadrupolar versio
@17,33#, we begin our project by applying the theoretic
scheme described above to the simplest model of a p
solvent, the Stockmayer fluid, and the simplest solu
namely, spherical ions.

The outline of the paper is as follows. In the next secti
we review briefly the fundamentals of the classical DFT
liquids and describe the ‘‘homogeneous reference fluid’’
proximation. We recall how the homogeneous direct corre
tion can be obtained by inverting the Ornstein-Zernike eq
tion using a spherical invariant basis set. In Sec. III,
formalism is applied to a Stockmayer solvent and it is sho
that in the general case of dipolarlike interactions, the
presssion of the free-energy functional can be greatly sim
fied and reduced to a functional ofn(r ), the particle number
density, andP(r ), the polarization density. Section IV de
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scribes the results, the computedh functions and invertedc
functions, and the comparison between functional minimi
tion results using the MD-based functional and direct M
calculations for the inhomogeneous system. This includes
inhomogeneous particle and polarization density arou
spherical ions, as well as the solvation free energies. Sec
V offers some conclusions and perspectives.

II. THE DENSITY FUNCTIONAL APPROACH

A. Exact free-energy functional

In this section we begin by recalling the basis of the de
sity functional theory of liquids, and discussing the gene
problem of a molecular solvent submitted to an exter
field. In the applications we have in mind, the external fie
will be created by a molecular solute of arbitrary shape d
solved at infinite dilution in the solvent. The individual so
vent molecules are considered as rigid bodies described
their position r and orientationV. For simplicity we use
below the variablex[(r ,V) to describe the solvent degree
of freedom.

The grand potential density functional for a fluid havin
an inhomogeneous densityr(x) in the presence of an exter
nal field Vext(x) can be defined as@23,24#,

Q@r#5F@r#2msE r~x!dx, ~1!

where F@r# denotes here the total Helmholtz free-ener
functional~including the external potential contribution! and
ms is the chemical potential. The grand potential can
evaluated relative to a reference homogeneous fluid ha
the same chemical potentialms and the densityr05n0/8p
~or n0/4p for linear molecules!, n0 being the particle density

Q@r#5Q@r0#1F @r#. ~2!

Following the general theoretical scheme introduced
Saam and Ebner@22# and Evans@23,24# ~see also Refs.
@21,34#!, the density functionalF@r# can be split into three
contributions: an ideal term, an external potential term, a
an excess free-energy term accounting for the intrinsic in
actions within the fluid,

F @r#5Fid@r#1Fext@r#1Fexc@r#, ~3!

with the following expressions for each term:

Fid@r#5b21E dx1Fr~x1!lnS r~x1!

r0
D2r~x1!1r0G , ~4!

Fext@r#5E dx1Vext~x1!r~x1!, ~5!

Fexc@r#5b21E E dx1dx2C~x1 ,x2!Dr~x1!Dr~x2!,

~6!

andDr(x)5r(x)2r0. The functionC(x1 ,x2) is still a func-
tional of r(x) defined by
6-2
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DENSITY FUNCTIONAL THEORY OF SOLVATION IN A . . . PHYSICAL REVIEW E66, 031206 ~2002!
C~x1 ,x2!5E
0

1

da~a21!c(2)~@ra#;x1 ,x2!, ~7!

wherec(2)(@ra#;x1 ,x2) is the two-particle direct correlation
function evaluated at a densityra(x)5r01aDr(x).

The equilibrium condition reads

dQ@r#

dr Ur5req
50 ⇒dF @r#

dr U
r5req

50. ~8!

Most of the solvation free-energy calculations employi
molecular simulations are performed at constant part
numberN rather than constant chemical potentialms . In this
thermodynamic ensemble, one should minimize the fu
tional

Q@r#5Q@r0#1F @r#2DmsE dxr~x!, ~9!

whereDms is the Lagrange multiplier corresponding to th
constraint*dxr(x)5N. The minimization equation become

dF @r#

dr
ur5req

5Dms . ~10!

At equilibrium, Dms5ms2m0 gives the solvent chemica
potential difference between the inhomogeneous and ho
geneous systems andF @req# corresponds to the Helmholt
free-energy difference. In particular, if the external poten
is created by an embedded solute,F @req# provides directly
the solute solvation free energy. This thermodynamic qu
tity is the one which is obtained in molecular simulations
thermodynamic integration techniques where the solute
progressively grown in the solvent at a fixed numberN of
solvent molecules@5#.

B. The homogeneous reference fluid approximation

The functional defined by Eqs.~3!–~6! is formally exact
but the inhomogeneous direct correlation functions ente
the definition of the excess term are unknown. Howev
simple approximations can be proposed for this quantity. T
most natural one consists in retaining only the first term
the Taylor expansion of the direct correlation functi
c(2)(@ra#;x1 ,x2) arounda50, that is, around the homoge
neous densityr0,

c(2)~@ra#;x1 ,x2!5c(2)~@r0#;x1 ,x2!5c~x1 ,x2!. ~11!

This amounts to assuming that all the inhomogeneous d
correlation functions can be identified with that of the ref
ence homogeneous fluid. This assumption, which we call
homogeneous reference fluid approximation, correspond
the HNC approximation in the context of integral equatio
@19,21#. The approximated excess term then reads

Fexc@r#52
b21

2 E E dx1dx2c~x1 ,x2!Dr ~x1!Dr~x2!,

~12!
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and the corresponding total functional described by Eqs.~5!,
~6!, and ~9! can now be minimized according to Eq.~10!,
leading to an integral equation for the density:

r~x!5r0* expF2bVext~x!1E dx2c~x1 ,x2!Dr~x2!G ,
~13!

where r0* 5r0ebDms. This equation, together with the no
malization condition ofr(x), can be solved iteratively. Al-
ternatively, as will be shown below, one can directly min
mize the initial functional with a normalization constraint.

Here, we are faced with the problem of knowing the d
rect correlation functionc(x1 ,x2) of the homogeneous refer
ence fluid. Having in hand an atomistic model for the s
vent, this can be done in principle by computing first the p
correlation functionh(x1 ,x2) of the homogeneous solven
using ‘‘exact simulation methods’’ such as Monte Carlo
molecular dynamics simulations, and then inverting t
Ornstein-Zernike integral equation which relates the fu
tions h andc:

h~x1 ,x2!5c~x1 ,x2!1r0E dx3h~x1 ,x3!c~x3 ,x2!.

~14!

A brute force direct resolution of the Ornstein-Zernike equ
tion is precluded, however, since, even when accounting
translational invariance, both functions still depend on n
continuous variables. In order to manage the inversion pr
lem it is thus necessary to take advantage of the symme
of the homogeneous system. It has been shown that both
pair distribution function and the direct correlation functio
for an isotropic system can be expanded in a basis of r
tional invariants@13#,

h~r12,V1 ,V2!5 (
mnlmn

hmn
mnl~r 12!Fmn

mnl~V1 ,V2 , r̂12!,

~15!

c~r12,V1 ,V2!5 (
mnlmn

cmn
mnl~r 12!Fmn

mnl~V1 ,V2 , r̂12!,

~16!

where r125r12r2 and r̂12 is the associated unitary vecto
Fmn

mnl(V1 ,V2 , r̂12)[Fmn
mnl(12) is defined as

Fmn
mnl~12!5 f mnl (

m8n8l8
S m n l

m8 n8 l8
D

3Dmm8
m

~V1!Dnn8
n

~V2!D0l8
l

~ r̂12!, ~17!

whereDmm8
m (V) are the Wigner rotation matrices, andf mnl

stand for normalization constants.
The elements of the basis to be considered in the exp

sion are those having the symmetry properties of the fl
under study@13#. For example, in Sec. II we study a pola
solvent in which the only possible rotational invariants a
those for whichm5n50, and m1n,l are even numbers
6-3
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Furthermore, the expansion can be closed at a certain o
One of the properties of the Ornstein-Zernike equation is
preserve the number of invariants, so that having expan
the functionh up to a certain ordern,m<M , the functionc
can be determined up to the same order. Blum@13,14#, and
later Patey@15,16#, have shown how to solve the angul
dependent OZ equations, projected on a rotational invar
basis set, by making use of Fourier space and Hankel tr
forms. The set of convolution equations obtained in r
space becomes a set of linear equations in Fourier s
which can be inverted straightforwardly. This is the basis
the integral equation theory of anisotropic fluids. The diff
ence between our approach and a fully theoretical one a
Refs.@13–16# is that we do not need to couple the OZ re
tion to a complementary real space closure such as the M
or HNC relation. Instead, we take theh functions as granted
from a preliminary ‘‘exact’’ calculation of the homogeneou
system under study. In this context, obtaining thec’s from
theh’s does not require an iterative process as in the inte
equation formulation, but a simple ‘‘one-shot’’ inversion.

III. THE CASE OF DIPOLAR FLUIDS

A. Restricted rotational invariant basis set

We now restrict the present approach to model dipo
fluids composed of spherical particles interacting throug
spherically symmetric short-range potentialus(r 12) and a
dipole-dipole potential,

udd~r12,V1 ,V2!5
1

r 12
3 @p1•p223~p1• r̂12!~p2• r̂12!#,

~18!

where, for each moleculei, pi5pVi . In this case, the orien
tation Vi is defined as the unitary vector pointing along t
dipole direction.

For these ‘‘linear’’ molecules, the rotational invariants
be selected in the expansion of theh and c function must
satisfy the conditionsm5n50 andm1n,l even. Up to lin-
ear order in the orientation vectorV ~that is, form,n<1),
the rotational invariants read

F000~12!51,

F110~12!5V1•V2 ,

F112~12!53~V1• r̂12!~V2• r̂12!2V1•V2 .

The normalization constantsf mnl entering in the definition of
Eq. ~17! are taken here equal to 1,2A3, andA30, respec-
tively.

Since the interaction between two particles in the flu
can be described in terms of the invariantsm,n<1,

u~r12,V1 ,V2!5u000~r 12!F
000~12!1u112~r 12!F

112~12!
~19!
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with u000(r 12)5us(r 12) andu112(r 12)52p2/r 12
3 , it is a rea-

sonable first approximation to also stop the expansion oh
andc at the same order.

Thus, retaining only the first three elements of the ba
the h andc functions can be expressed as

h~r 12,V1 ,V2!5h000~r 12!1h110~r 12!F
110~12!

1h112~r 12!F
112~12!, ~20!

c~r 12,V1 ,V2!5c000~r 12!1c110~r 12!F
110~12!

1c112~r 12!F
112~12!. ~21!

The different components ofh can be computed by perform
ing molecular dynamics simulations of the homogeneous
polar fluid. They are defined as the average of the co
sponding spherical invariant over all possible orientations
a pair at a given distance@21#. The Ornstein-Zernike relation
can then be solved in the restricted representation. As
been long known, long, the inversion of the OZ relati
starting from ‘‘computed’’h functions is a nontrivial numeri-
cal problem. Even if theh projections can be determine
with high precision using long MD trajectories and a fair
large number of particles, it is still hard to cancel complete
the statistical noise at large distances, and even a tiny n
makes the usual inversion of the OZ relation in Fourier sp
rather unstable. Instead, we have chosen to transform th
andc projections into short-range functions@14# and to use
the direct-space version of the OZ relation introduced
Baxter @35#, in conjunction with the minimization schem
developed by Dixon and Hutchinson for atomic fluids@36#.
The details for this solution will be presented in a forthco
ing publication@37#. It will be seen in the application sectio
below that the method leads to stable and smooth solut
for the c’s, starting from theh’s determined by MD.

B. The dipolar fluid reduced density functional

We use the expansion of the direct correlation function
terms of the first spherical invariants, Eq.~21!, and consider
an external potentialFext(r ) and external electric field
Eext(r ). It is then possible to perform analytically the inte
grals over the orientations in the different components of
functional defined by Eq.~9!. The result is a new functiona
in terms of the number density

n~r !5E dVr~r ,V! ~22!

and the polarization density

P~r !5pE dVVr~r ,V!. ~23!

This functional can be written as~see the Appendix for de
tails!

DQ@n,P#5Fid@n,P#1Fexc@n,P#1Fext@n,P#

2DmsE drn~r !, ~24!
6-4
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DENSITY FUNCTIONAL THEORY OF SOLVATION IN A . . . PHYSICAL REVIEW E66, 031206 ~2002!
where, as before,Dms is the Lagrange multiplier assuring
constant number of solvent particles, and where the diffe
components read

Fid@n,P#5b21E drn~r !lnS n~r !

n0
D2n~r !1n0

1b21E drn~r !F lnF L 21
„P~r !/p n~r !…

sinh~L 21
„P~r !/p n~r !…

G
1

P~r !

p n~r !
L 21S P~r !

p n~r ! D G , ~25!

Fexc@n,P#5
1

2E dr1@Dn~r1!fexc~r1!

2P~r1!•Eexc~r1!#, ~26!

Fext@n,P#5E dr1@n~r1!fext~r1!2P~r1!•Eext~r1!#.

~27!

In the ideal term,L designates the Langevin function an
L 21 its inverse;P(r ) is the modulus of the polarizatio
vectorP(r ). The excess potential and electric fields are fu
tions of thec projections:

fexc~r1!52b21E dr2c000~r 12!Dn~r2!,

Eexc~r1!5~bp2!21E dr2„c
110~r 12!P~r2!

1c112~r 12!$3@P~r2!• r̂12# r̂122P~r2!%…. ~28!

The great advantage of this functional form is that the m
mization can now be performed with respect to the two fie
n(r ) andP(r ) instead of the full densityr(r ,V). The equi-
librium condition is:

dF @n,P#

dn Uneq ,Peq
5Dms ,

dF @n,P#

dP U
neq ,Peq

50. ~29!

Furthermore, and again for the problem of a solute in
solvent, the value ofF at equilibrium, F @neq ,Peq#, pro-
vides a direct measure of the solute solvation energy.

IV. RESULTS

A. Molecular model and MD simulation

The theoretical approach described above was applied
Stockmayer solvent, composed of Lennard-Jones parti
~parameterss,e) carrying a permanent dipole of magnitud
p at their center. The physical parameters used in the si
lations weres53.024 Å,e51.847 kJ/mol,p51.835 D and
the thermodynamic conditions were temperatureT5298 K
and densityr50.0289 particles/Å3. Those numbers corre
spond to a set of reduced variablesr* 5rs350.8, T*
5kT/e51.35, andp* 25p2/kTs352.96 explored by Pol-
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lock and Alder in their study of the dielectric properties
the Stockmayer fluid@38#. For those conditions, they coul
estimate a static dielectric constantes close to 80. The MD
simulations were performed with theMDMULP program from
the CCP5 program library@39#. The Ewald treatment of the
Coulombic interactions was employed throughout. For
homogeneous fluid calculations, we have used either 137
2916 particles and a cubic box size of 36.2 Å and 46.5
respectively. The latter choice represents a rather large
tem according to the usual standards for molecular liqu
and the spherical invariant projections ofh, h000(r ),h110(r ),
andh112(r ) could be computed up to a rather long distan
Rc523.25 Å; they are plotted in Fig. 1. For Ewald bounda
conditions, the dielectric constantes can be computed ac
cording to the formula@21#

es2153yS 11
4pn0

3 E
0

`

dr r 2h110~r ! D , ~30!

with y54pbp2n0/9. We find es569.2, which is slightly
less than the value quoted by Pollock and Alder but o
calculations employ a much larger simulation box. It can
seen in the inset of Fig. 1 that the predicted asymptotic
havior of h112(r ),

h112~r !5
~es21!2

4pesn0yr3
, ~31!

is correctly described with our computed value ofes . @The
slight discrepancy developing close to the box edges is
to the fact that Eq.~30! holds for an infinite system, wherea
our simulations use periodic Ewald boundary conditions.#

The projections of the direct correlation functio
c000(r ),c110(r ), and c112(r ) obtained by solving the OZ
equations are displayed in Fig. 2. Again, the theoreti
asymptotic behavior relating the direct correlation functi
and the two-body potential,

c~r12,V1 ,V2!52bu~r12,V1 ,V2!, ~32!

FIG. 1. Pair correlation function components of the Stockma
liquid for r* 50.8, T* 51.35, andp* 252.96 computed by MD
simulations:h000(r ), h110(r ), andh112(r ) ~solid, dashed, and dot
dashed line, respectively!. The inset comparesh112(r ) ~solid line! to
the theoretical asymptotic limit of Eq.~30! ~dashed line!.
6-5
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which is by no means imposeda priori, is shown in the inset
for the slowest componentc112(r ), and is seen to be per
fectly satisfied. Overall, the observed properties of the co
putedh andc functions give some confidence regarding t
convergence of our calculations and the validity of o
Ornstein-Zernike inversion method.

B. Functional minimization and comparison with MD results

The functional defined by Eqs.~25!–~27! being now well
defined by the knowledge of thec’s, can be minimized for
any external fieldVext(r ,V) to yield the equilibrium density
profile and equilibrium excess free energy. We have stud
the special case of a spherical Lennard-Jones particle,
the same parameterss,e as the solvent~so roughly a diam-
eter of 3 Å), and carrying a charge1q at its center. This
solute was placed at the center of a cubic box of side 36.2
with periodic boundary conditions. The functional corr
sponding to this system was discretized on a 643 three-
dimensional grid and minimized with respect ton(r ) and the
averaged orientationV(r )5P(r )/pn(r ). Our experience
shows that for the present functional, as well as for
closely related electrostatic polarization density functio
used in Ref.@3#, a grid spacing of roughly 2 points/Å i
sufficient to yield smooth and converged densities aro
solutes of molecular size.

The convolution integral appearing in Eq.~12! for the
excess free energy is evaluated using fast Fourier trans
techniques, and the minimizations are carried out with a c
jugate gradient scheme. The minimization routine is c
straint to preserve the total number of particles and to av
unphysical negative particle densities. The starting point
the minimization is a homogeneous densityn0 and zero po-
larization.

In Figs. 3 and 4, we display the radial particle density a
the radial polarization density around an ion of charge1e
obtained by minimization. The two quantities are compa
to the corresponding ones computed with the same box
and same number of particles by molecular dynamics si
lations. Forn(r ), it can be seen that the first peak is e

FIG. 2. Direct correlation function components of the Stoc
mayer liquid, obtained by inversion of the OZ equation:c000(r ),
c110(r ), and c112(r ) ~solid, dashed, and dot-dashed line, resp
tively!. The inset comparesc112(r ) ~dashed line! to the theoretical
asymptotic limit2bu112(r ) ~solid line!.
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tremely well reproduced, while the second one is at the c
rect position but is slightly too high and too narrow. Th
agreement for the polarization profileP(r ) appears even bet
ter, with a correct first peak and correct asymptotic behav
and only a slightly too high second peak. Overall, the den
functional approach is doing extremely well, especially
one accounts for the fact that the fields created by a sm
particle of charge1e in the solvent are quite high. As can b
expected, the DFT calculations do even better for ions
smaller charges~we checked forq50.1e andq50.5e). Note
again that the density functional theory calculation relies
two approximations:~i! the homogeneous reference fluid a
proximation and~ii ! the truncation of the spherical invarian
expansion of thec function at the lowest possible order com
patible with the interaction potential symmetry. Approxim
tion ~i!, based on an expansion of the particle density aro
the homogeneous densityr0, is not expected to work for
strong density or orientational gradients, although it h
proved to work in particular in the first solvation shell whe
the density is far from being homogeneous. The validity
the second approximation is hard to assessa priori and can
only be justified by the results. The approximation seems
in the present case, although probably responsible for
discrepancies observed in the second peak. It should
tested also for solutes of different symmetries, dipoles,
small molecules of arbitrary shape. We are presently in
process.

-

-

FIG. 3. Solvent density around an ion of charge1e: Functional
minimization results~solid line! compared to MD results~circles!.

FIG. 4. Same as Fig. 3 for the radial polarization density.
6-6
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Finally, since our main motivation is to be able to es
mate solvation energies, we display in Fig. 5 the electrost
solvation free energy of ions of different charges, compu
either by direct functional minimization at each value ofq
@and subtraction of the neutral Lennard-Jones atom solva
free energyF(q50)], or by molecular dynamics using th
thermodynamic integration formula

DFel~q!5E
0

q

dj^Vel~j!&, ~33!

where^Vel(j)& is the average reaction electrostatic poten
exerted by the solvent at the center of the ion for a cha
q5j. In practice, a discrete increment of charge of 0.1e was
employed to run a series of MD simulations and compute
integral in Eq.~33!. The functional minimization was per
formed for the same set of charges. Again, one can se
Fig. 5 that the DFT calculations do extremely well. As can
expected, the agreement with MD is perfect for sm
charges~and thus small fields!, but slightly degrades for
higher charges. The relative error reaches;5% for q5
1e. Again, the results are encouraging and the test need
be extended to more complex solutes.

V. CONCLUSIONS AND PERSPECTIVES

The position- and angle-dependent direct correlation fu
tion is the key quantity entering in the density function
theory description of inhomogeneous molecular fluids s
mitted to external potentials. In the homogeneous refere
fluid approximation, this function is approximated by that
the homogeneous fluid of equal chemical potential, thus
the absence of any external perturbation. We have show
this paper that, at least for dipolar fluids, the homogene
direct correlation function can be inferred to a good appro
mation by first computing ‘‘exact’’ position and angular two
body correlations using MD or MC simulation methods, a
then inverting the Ornstein-Zernike equation. To our know
edge, this is the first time that this approach has proved to
possible and valuable for a polar fluid with long-range int
actions. The computedc function was then injected into th
definition of a solvent free-energy density functional, and

FIG. 5. Electrostatic solvation energy of an ion of chargeq in
the Stockmayer solvent: Functional minimization~circles! com-
pared to MD results~triangles!.
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validity was tested on the solvation properties of simp
spherical solutes in a dipolar solvent. When compared
molecular dynamics, the results of the functional minimiz
tion turn out to be very encouraging. Since we have alre
developed the methodology for representing and minimiz
the functional on a three-dimensional grid around the solu
with no symmetry assessment, we are planning to conti
our approach for solutes of more complex shape in the s
dipolar solvent, as well as in more realistic solvent mod
reproducing the properties of liquid water, in terms of qu
drupolar @17,33# or higher-order multipolar interaction
@40,41#.
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APPENDIX: THE DIPOLAR FLUID FREE-ENERGY
FUNCTIONAL

Accounting for the definition of the variablesn(r ) and
P(r ) in Eqs.~22!,~23!, the expansion of thec function in Eq.
~16! and of the external potential, and the obvious symme
requirement that*dViVi50, a preliminary integration ove
the angles in the general expression forFext andFexc in Eqs.
~6! and ~12! yields readily the reduced expressions given
Eqs.~26! and ~27!.

The derivation of the ideal part of the functional is a mo
subtle task due to the nonlinear termr(r ,V)ln r(r ,V). We
begin by posing

r~r ,V!5n~r !a~r ,V!, ~A1!

wherea(r ,V) denotes the conditional probability density fo
the orientations at fixedr , satisfying*dVa(r ,V)51. With
this definition, the ideal term in Eq.~5! can be separated int
a density and an orientational contribution:

Fid@n,P#5b21E dr Fn~r !lnS n~r !

n0
D2n~r !1n0G

1E drn~r !E dVa~r ,V!ln@4pa~r ,V!#.

~A2!

We now use the fact that the formal solution forr(r ,V) is
known at equilibrium@Eq. ~13!# so that one can calculate th
orientational integral in the second term ofFid above. Per-
forming the angle integration in the exponent of Eq.~13! in
the same way as was done forFext andFexc, one gets

n~r !a~r ,V!5r0* exp@2bF~r !#exp@bpV•E~r !#,
~A3!
6-7
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where the total potentialF(r ) and total electric fieldE(r )
are the sums of the corresponding external and excess q
tities. Integrating overV gives first

n~r !5r0* exp@2bF~r !#
sinh@bpE~r !#

bpE~r !
~A4!

and thus

a~r ,V!5
bpE~r !

sinh@bpE~r !#
exp@bpE~r !•V#, ~A5!

with E(r )5uE(r )u. Next computing the averaged orientatio
at fixed r , V(r )5*dVVa(r ,V) yields

V~r !5L~bpE~r !!
E„r )

E~r !
, ~A6!

whereL(x)5coth(x)21/x is the Langevin function. One ca
deduce thatV(r ) is parallel toE(r ), and that

bpE~r !5L 21~V~r !!, ~A7!

bpE~r !5
L 21~V~r !!

V~r !
V~r !, ~A8!
s.

em

ed
F.

m

ed

em

03120
an-
where L 21(x) is the inverse ofL(x) and V(r )5uV(r )u.
Injecting these relations into the expression~A5! for
a(r ,V), and then performing the angle integration in E
~A2! yields the final expression for the ideal free ener
given in Eq.~25!, with V(r )5P(r )/pn(r ).

Note that the derivation above is done for the equilibriu
density, but that in Eq.~25! we make the crucial assumptio
that the functional form can be extended to polarizat
fields which are out of equilibrium. This is a reasonable
sumption since~i! the functional does yield a minimum cor
responding to the correct equilibrium density and~ii ! its lin-
earization for small polarization fields yields the corre
electrostatic limit, namely,

Fid@n,P#5E dr
P~r !2

2adn~r !
, ~A9!

wheread5bp2/3 is the usual equivalent polarizability of
dipolep at the temperatureb21. One recognizes the expres
sion for the polarization free energy in a medium with loc
electric susceptibilityx(r )5adn(r ).

Finally, collecting the different terms, and performing th
angular integration for the constraint term also, yields
final expressions in Eqs.~24!–~27!, with the same definition
of the solvent excess chemical potentialms
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