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In the density functional theory formulation of molecular solvents, the solvation free energy of a solute can
be obtained directly by minimization of a functional, instead of the thermodynamic integration scheme neces-
sary when using atomistic simulations. In the homogeneous reference fluid approximation, the expression of
the free-energy functional relies on the direct correlation function of the pure solvent. To obtain that function
as exactly as possible for a given atomistic solvent model, we propose the following approach: first to perform
molecular simulations of the homogeneous solvent and compute the position and angle-dependent two-body
distribution functions, and then to invert the Ornstein-Zernike relation using a finite rotational invariant basis
set to get the corresponding direct correlation function. This rather natural scheme is proved, for the first time
to our knowledge, to be valuable for a dipolar solvent involving long range interactions. The resulting solvent
free-energy functional can then be minimized on a three-dimensional grid around a solute to get the solvent
particle and polarization density profiles and solvation free energies. The viability of this approach is proven in
a comparison with “exact” molecular dynamics calculations for the simple test case of spherical ions in a
dipolar solvent.
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[. INTRODUCTION cise estimation of free energies by computer simulation re-
mains extremely costly; it requires one to consider a suffi-
The determination of the solvation free energy of complexciently large number of solvent molecules around the
solutes in molecular solvents is a problem of primary impor-molecular solute and, for this large system, to average a
tance in physico chemistry and biology. From the theoretical'generalized force” over many microscopic solvent configu-
point of view, two extreme strategies can be found in therations, and this for a lot of different points along the revers-
literature. A first class of methods relies on the assumptionble thermodynamic integration path.
that the macroscopic laws of electrostatics remain valid at a In this context, it is desirable to devise methods whigh
microscopic level, and that solvation free energies can bare able to cope with the molecular nature of the solvent, but
computed by combining a dielectric continuum descriptionwithout considering explicitly all its instantaneous micro-
of the solvent outside the solute core and a simple solventscopic degrees of freedom, aitii) can provide solvation
accessible surface area expression for the nonelectrostaptoperties at a modest computer cost compared to explicit
contributions[1]. For the electrostatic part, the stationary simulations. Among various possible theoretical approaches,
Poisson equation can be solved using sharp definitions of thene should mention molecular integral equation theories
dielectric boundaries and various efficient numerical tech{10-18, and their three-dimensional implementation around
niques[2], including recent methods based on the minimiza-complex solute§19,20, and the density functional theory
tion of polarization densityf3] or polarization chargef4]  (DFT) of molecular liquidg21-25, which will be the focus
free-energy functionals. There are serious limitations, howof the present paper. The “classical” density functional
ever, to a continuum dielectric approach; first of all the va-theory has many points in common with the DFT of elec-
lidity of the macroscopic electrostatic laws at microscopictrons in electronic structure problems. It has been used ex-
distances and the neglect of the molecular nature of the sotensively for the description of atomic liquids at interfaces
vent. Another standard route for computing solvation freg26], and more recently of molecular liquid27-31. The
energies consists in using molecular simulation techniquesssence of the theory is the following: For an atomic fluid
such as molecular dynamid#/D) or Monte Carlo(MC),  submitted to an arbitrary external potentiglr), the grand
with an explicit molecular solvent; for example, the SPC orpotential can be written as a functional of the one-particle
TIP4P models for water. This way, the solute and the solventensity p(r), which is minimum for the thermodynamic
are treated in a consistent way, with a realistic moleculaequilibrium densityp.(r). In particular, the so-called excess
force field. There are a number of well-established statisticalree-energy contribution, due to the intrinsic interactions
mechanics techniques to estimate absolute or relative frewithin the fluid, appears also as a unique functionagb@f),
energies by molecular simulatiofs], for example, thermo- independent of the applied external field, and its knowledge
dynamic integration methods based on umbrella samplingharacterizes the fluid completely. Of course, this excess
[6,7], or generalized constrain{8,9]. In any case, the pre- free-energy functional is not known, but valuable approxima-
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tions can be proposed. The rigorous definition of the excesscribes the results, the computedunctions and inverted
functional involves the direct correlation functiothe ¢ functions, and the comparison between functional minimiza-
function) of the inhomogeneous fluid, which is connected totion results using the MD-based functional and direct MD
the pair correlation functiorithe h function through the calculations for the inhomogeneous system. This includes the
Ornstein-Zernike(OZ) equation. A tempting approximation inhomogeneous particle and polarization density around
is thus to replace the inhomogeneous direct correlation funcsPherical ions, as well as the solvation free energies. Section
tion by that of a homogeneous reference fluid. This was don& Offérs some conclusions and perspectives.
in Ref.[29] where the authors use a semiphenomenological
description of the direct correlation functions in inhomoge- Il. THE DENSITY FUNCTIONAL APPROACH
neous ionic solutions using homogeneous MSA integral
equation expressions. A similar approximation was also de-
veloped in Refs[30,31] for dipolar fluids. There the direct  In this section we begin by recalling the basis of the den-
correlation of the isotropic fluid is inferred from RHNC in- sity functional theory of liquids, and discussing the general
tegral equation theory, and then injected into a density funcProblem of a molecular solvent submitted to an external
tional to predict the phase behavior of the fluid. Instead offi€ld. In the applications we have in mind, the external field
approximate integral equations inputs, an exact descriptioill be created by a molecular solute of arbitrary shape dis-
of the correlation function can also be achieved by simplysolved at infinite dilution in the solvent. The individual sol-
extracting it from a fully molecular simulation of the homo- vent molecules are considered as rigid bodies described by
geneous solvent at given thermodynamic conditions. Thigheir positionr and orientation). For simplicity we use
latter strategy has been largely unexplored, except for hardPelow the variablex=(r,{2) to describe the solvent degrees
ellipsoid fluids with short-range anisotropic repulsive inter-of freedom.
actions[32], and it is the purpose of this work to develop it ~ The grand potential density functional for a fluid having
for polar solvents. an inhomogeneous densipfx) in the presence of an exter-
We thus propose the following general scheme. For dal field Ve, (x) can be defined g£23,24,
given solvent model at given thermodynamic conditions, ex-
tensive MD simulati_qns of the hpmoggneous system are per- O[p]= F[P]—Msj p(x)dx, (1)
formed and the position- and orientation-dependent pair cor-
relation function is computed. The Ornstein-Zernike integral

equation is then inverted to yield the direct correlation func-Vhere Flp] denotes here the total Helmholtz free-energy

tion. This function is then injected into the expression of thefun(.:tlonal(lncludllng the extgrnal potential contrlbgtﬁ)and
is the chemical potential. The grand potential can be

free-energy functional that describes the solvent particle anés

orientation density in the presence of any external field, inevaluated relatl\_/e to a ref_erence homogengous_flwd having
particular, a dissolved molecule. Minimization of the func- (€ same chemical potentials and the density,=no/8m

tional gives the equilibrium solvent density profile around (Of No/4 for linear moleculel no being the particle density:
the solute and its solvation free energy. To assess the validity _ i
of the method, the functional results can be compared to Olp]=0Lpol* 7 [p] @

those of a molecular dynamics simulation of the solvent ingg|iowing the general theoretical scheme introduced by
the presence of the solute. In this case, the computation &aam and Ebnef22] and Evans[23,24 (see also Refs.
the solvation free energy requires the definition of a reversrp1 34) the density functiona [ p] can be split into three
ible thermodynamic path, for example, a gradual growth ofcontriputions: an ideal term, an external potential term, and

the solute inside the solvent. _an excess free-energy term accounting for the intrinsic inter-
Although the method is of general content and our ulti-ctions within the fluid,

mate goal is to provide a convincing free-energy functional

for liquid water, even in a simplified quadrupolar version Flpl=Fdlpl+ Fexiplt+ Foxd pl (3
[17,33, we begin our project by applying the theoretical

scheme described above to the simplest model of a polawith the following expressions for each term:

solvent, the Stockmayer fluid, and the simplest solutes,
namely, spherical ions.

The outline of the paper is as follows. In the next section,
we review briefly the fundamentals of the classical DFT of
liquids and describe the “homogeneous reference fluid” ap-
proximation. We recall how the homogeneous direct correla- fext[P]:f dX; Vext(X1) p(X1), (5
tion can be obtained by inverting the Ornstein-Zernike equa-
tion using a spherical invariant basis set. In Sec. lll, the
formalism is applied to a Stockmayer solvent and it is shown fexip]zﬁflf f dx10%,C(X1,%2) Ap(X1) Ap(X2),
that in the general case of dipolarlike interactions, the ex- (6)
presssion of the free-energy functional can be greatly simpli-
fied and reduced to a functional ofr), the particle number andAp(x)=p(X)— pg. The functionC(x;,X,) is still a func-
density, andP(r), the polarization density. Section IV de- tional of p(x) defined by

A. Exact free-energy functional

p(X1
Po

)

fid[p]=ﬁ_1f dxy p(Xl)lrI( ))—p(xl)+po
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1 ) and the corresponding total functional described by Esjs.
C(XluXZ):jO da(a—1)c®([p,]ix1,%y), (7)  (6), and (9) can now be minimized according to E€LO),
leading to an integral equation for the density:
wherec®([p,];x1,%,) is the two-particle direct correlation

function evaluated at a density,(X) = po+ aAp(X). p(X)=pg ex;{ — BVex(X)+ f dx,c(Xy ,Xz)Ap(Xz)},
The equilibrium condition reads

(13
% _ = :>5]:[p] =0. (8) where p& = poeP*#s. This equation, together with the nor-
op |P7Pea op P malization condition ofp(x), can be solved iteratively. Al-

ternatively, as will be shown below, one can directly mini-
Most of the solvation free-energy calculations employingmize the initial functional with a normalization constraint.
molecular simulations are performed at constant particle Here, we are faced with the problem of knowing the di-
numberN rather than constant chemical potenjigl. In this  rect correlation functior(x, ,x,) of the homogeneous refer-
thermodynamic ensemble, one should minimize the funcence fluid. Having in hand an atomistic model for the sol-
tional vent, this can be done in principle by computing first the pair
correlation functionh(x,,x,) of the homogeneous solvent
using “exact simulation methods” such as Monte Carlo or
O[p]=Olpol+F [p]—A,qu dxp(x), ®  molecular dynamics simulations, and then inverting the
Ornstein-Zernike integral equation which relates the func-
where A u, is the Lagrange multiplier corresponding to the tionsh andc:
constraintf/ dxp(x) = N. The minimization equation becomes

SF [p] ~ h(Xl,Xz):C(XLXz)*'PoJ dx3h(Xy,X3)C(X3,X2)-
5—p|P:Peq_A’U“S' (10 (14)
A brute force direct resolution of the Ornstein-Zernike equa-

ion is precluded, however, since, even when accounting for
ranslational invariance, both functions still depend on nine

At equilibrium, Aus=us— po gives the solvent chemical
potential difference between the inhomogeneous and hom%

n m rr n he Helmholtz . . ; .
geneous systems afl[ peg] corresponds to the Helmholt continuous variables. In order to manage the inversion prob-

free- iff N icular, if th I ial - )
ree-energy difference. In particular, if the externa pOtentlalem it is thus necessary to take advantage of the symmetries

is created by an embedded solufe[ p.,] provides directly
the solute solvation free energy. This thermodynamic quan(—)f the homogeneous system. It has been shown that both the

tity is the one which is obtained in molecular simulations bypalr distribution function and the direct correlation function

thermodynamic integration techniques where the solute i%or an isotropic system can be expanded in a basis of rota-

progressively grown in the solvent at a fixed numbé&bof lonal invariants{ 13|,
solvent molecule$5]. .
h(rip, Q,Q,)= E h,TD'(rlz)q),TD'(ﬂl,ﬂz,rlz),
. . . mnluv
B. The homogeneous reference fluid approximation (15)
The functional defined by Eq$3)—(6) is formally exact
but the inhomogeneous direct correlation functions entering mnl mnl n
the definition of the excess term are unknown. However, C(r12’91'92):mn2mv Cv (M2 P, (21,05,119),
simple approximations can be proposed for this quantity. The (16)
most natural one consists in retaining only the first term in
trgze) Taylor expansion of the direct correlation functionwnerer,,=r,—r, andr,, is the associated unitary vector.
c'“/([paliX1,%p) arounda=0, that is, around the homoge- ™. Q. F.)=dmn ; :
@ ' sy, 1) =07 7(12) is defined as
neous densityy, wr (12,11 =P, (12)

C(Z)([pa];xl,X2)=C(2)([po];Xl,X2):C(Xl,Xz). (11) q)ln;s|(12):fmn| 2 ( rnl r: )\I,)
TN ,LL 14
This amounts to assuming that all the inhomogeneous direct o )
correlation functions can be identified with that of the refer- X D;‘;M,(Ql)D:V,(QZ)D'O)\,(rlz), (17
ence homogeneous fluid. This assumption, which we call the
homogeneous reference fluid approximation, corresponds twhereDZ‘#,(Q) are the Wigner rotation matrices, affl"
the HNC approximation in the context of integral equationsstand for normalization constants.

[19,21]. The approximated excess term then reads The elements of the basis to be considered in the expan-
P sion are those having the symmetry properties of the fluid
_ kP under study{13]. For example, in Sec. Il we study a polar
Fexdpl==73 f f PadxoC(x1.X2) Ap (X)) Ap(Xa), solvent in which the only possible rotational invariants are

(12 those for whichu=»=0, andm+n,| are even numbers.
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Furthermore, the expansion can be closed at a certain ordetith u®°Yr,,) =uy(r;,) andu'*qr,,)=—p?r3,, itis a rea-
One of the properties of the Ornstein-Zernike equation is tagonable first approximation to also stop the expansioh of
preserve the number of invariants, so that having expandeshdc at the same order.

the functionh up to a certain orden,m=<M, the functionc Thus, retaining only the first three elements of the basis,
can be determined up to the same order. B[U13,14], and  the h andc functions can be expressed as

later Patey[15,16], have shown how to solve the angular

dependent OZ equations, projected on a rotational invariant h(rip,21,82,)=h%r 1) + ' qr ) ®H12)

basis set, by making use of Fourier space and Hankel trans- 11 112

forms. The set of convolution equations obtained in real +hHr @HA(12), (20
space becomes a set of linear equations in Fourier space _ ~000 110 110

w%ich can be inverted straightforwgrdly. This is the basispof C(F12: 821, 80p) =C T 1) +C I 1) D7(12)

the integral equation theory of anisotropic fluids. The differ- +c1r ) ®11%(12). (21
ence between our approach and a fully theoretical one as in

Refs.[13—16 is that we do not need to couple the OZ rela- The different components &fcan be computed by perform-
tion to a complementary real space closure such as the MSIRg molecular dynamics simulations of the homogeneous di-
or HNC relation. Instead, we take tihefunctions as granted polar fluid. They are defined as the average of the corre-
from a preliminary “exact” calculation of the homogeneous sponding spherical invariant over all possible orientations of
System under Study_ In this context, Obtaining te from a pair ata given d|StanC{él] The Ornstein-Zernike relation
theh’s does not require an iterative process as in the integrafan then be solved in the restricted representation. As has

equation formulation, but a simple “one-shot” inversion. ~ been long known, long, the inversion of the OZ relation
starting from “computed™ functions is a nontrivial numeri-

cal problem. Even if theh projections can be determined
Iil. THE CASE OF DIPOLAR FLUIDS with high precision using long MD trajectories and a fairly
A. Restricted rotational invariant basis set large nu'm'ber of particles, it is 'stiII hard to cancel completely
) ) the statistical noise at large distances, and even a tiny noise
We now restrict the present approach to model dipolaisayes the usual inversion of the OZ relation in Fourier space
fluids composed of spherical particles interacting through @ather unstable. Instead, we have chosen to transforrh the
spherically symmetric short-range potentiaf(rio) and a  anqc projections into short-range functiofig4] and to use

dipole-dipole potential, the direct-space version of the OZ relation introduced by
1 Baxter [35], in conjunction with the minimization scheme
Ugg(T12,Q2q, Q) = T[P1'p2—3(p1' FlZ)(pZ'FlZ)]a developed by Dixon and Hutchinson for atomic flui@s].

The details for this solution will be presented in a forthcom-
(18) ing publication[37]. It will be seen in the application section
below that the method leads to stable and smooth solutions

where, for each molecuie p;=p€; . In this case, the orien- for thec’s, starting from theh’s determined by MD.
tation Q; is defined as the unitary vector pointing along the
dipole direction. B. The dipolar fluid reduced density functional

For these “linear” molecules, the rotational invariants to  \we yse the expansion of the direct correlation function in
be selected in the expansion of theand ¢ function must  terms of the first spherical invariants, B§1), and consider
satisfy the conditiongs=»=0 andm-+n,l even. Up to lin- 5 external potentialb,(r) and external electric field
ear order in the orientation vect@l (that is, form,n<1),  g_ (r). It is then possible to perform analytically the inte-

o

the rotational invariants read grals over the orientations in the different components of the
functional defined by Eq9). The result is a new functional
®090%12)=1, in terms of the number density
®119%12)=0,-Q,, n(r)=f dQp(r,Q) (22)

D12(12)=3(Qy - T1)(Qy-T1p)— Q- Q. and the polarization density

The normalization constan§ entering in the definition of P(r)= pf dQQp(r, Q). (23

Eq. (17) are taken here equal to-1,/3, and/30, respec-

tively. This functional can be written asee the Appendix for de-
Since the interaction between two particles in the fluigtails)

can be described in terms of the invarianmt;n<1, AO[N,P]=Fg[n,P]+ Fard NP+ Far[N.P]

u(rlZ!leQZ):uooo(rl2)q)000(12)+u112(r12)¢)112(1%19) _AMSJ drn(r), (24)
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where, as befored u is the Lagrange multiplier assuring a 3 — T T T T
constant number of solvent particles, and where the different - ot .
components read

10 20

]—‘id[n,P]z,Bflf drn(r)ln(%) —n(r)+ng

LY P(r)/pn(r
+B*lf drn(r) In : (l( ) p ( )) |
sinh( £ ~*(P(r)/p n(r))
1 I L I L I 1 l 1
iy Ll( P(r) ) , (25) 0 5 10 15 20
pn(r) pn(r) r ()
1 FIG. 1. Pair correlation function components of the Stockmayer
Fexd N,P]= 2 dry[An(ry) dexdr1) liquid for p*=0.8, T*=1.35, andp*?=2.96 computed by MD
simulations:h®qr), h9r), andh'*4r) (solid, dashed, and dot-
—P(r1) Eexdr1)]1, (26)  dashed line, respectivélyThe inset compards-*qr) (solid line) to

the theoretical asymptotic limit of E430) (dashed ling

j:ext[n’P]:j drafn(ry) dexdr1) = P(ry)-Eex(ra)]- lock and Alder in their study of the dielectric properties of
(27)  the Stockmayer fluid38]. For those conditions, they could
i i ) , estimate a static dielectric constantclose to 80. The MD
In the ideal term,C designates the Langevin function and gjmylations were performed with theovuLP program from
£~ its inverse; P(r) is the modulus of the polarization e ccps program librarf39]. The Ewald treatment of the
vectorP(r). The excess potential and electric fields are funccqyiombic interactions was employed throughout. For the

tions of thec projections: homogeneous fluid calculations, we have used either 1372 or
2916 particles and a cubic box size of 36.2 A and 46.5 A,
Goxd 1) = _Bflf dr,c%%r ) An(ry), respectively. The latter choice represents a rather large sys-

tem according to the usual standards for molecular liquids,
and the spherical invariant projectionsgfh®9(r),h*qr),
Eexc(rl)z(ng)*lJ’ dr,(c*(r 1) P(ry) andhq14(r) could be computed up to a rather long distance
R.=23.25 A; they are plotted in Fig. 1. For Ewald boundary
+ M1 ) BIP(r,) - Filf1o— P(ro))). (28) ggp{iggrt\st:‘gefoc:ﬁlﬁlc;;% constamt can be computed ac
The great advantage of this functional form is that the mini-
mization can now be performed with respect to the two fields €s—1=3y
n(r) andP(r) instead of the full density(r,Q2). The equi-
librium condition is:

47Tn0

1+ 3 f:drrzh“"(r)), (30

with y=47B8p?ny/9. We find e,=69.2, which is slightly

oF [n,P] A oF [n,P] _0. (g 'ess than the value quoted by Pollock and Alder but our
Sn NoqPeq K SP o =0. (29 calculations employ a much larger simulation box. It can be
Neq:"eq seen in the inset of Fig. 1 that the predicted asymptotic be-

H 11
Furthermore, and again for the problem of a solute in thd'avior ofh Ar),
solvent, the value ofF at equilibrium,  [Ngq,Peql, pro- 5
vides a direct measure of the solute solvation energy. h112(r)= (es—1)

Aenoyr®’ @y

IV. RESULTS

is correctly described with our computed valueegf [The

slight discrepancy developing close to the box edges is due
The theoretical approach described above was applied tota the fact that Eq(30) holds for an infinite system, whereas

Stockmayer solvent, composed of Lennard-Jones particlesur simulations use periodic Ewald boundary conditibns.

(parametersr,€) carrying a permanent dipole of magnitude  The projections of the direct correlation function

p at their center. The physical parameters used in the simw®r),c'Yr), and c**qr) obtained by solving the OZ

lations wereo=3.024 A e=1.847 kJ/molp=1.835 D and equations are displayed in Fig. 2. Again, the theoretical

the thermodynamic conditions were temperatlire298 K asymptotic behavior relating the direct correlation function

and densityp=0.0289 particles/A Those numbers corre- and the two-body potential,

spond to a set of reduced variablp$ =po3=0.8, T*

=kT/e=1.35, andp*?=p?/kTo>=2.96 explored by Pol- C(ri,Q1,Q,)=—Bu(r;,,Q,,Q,), (32

A. Molecular model and MD simulation
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n(r)

r () r (&)

FIG. 2. Direct correlation function components of the Stock-  FIG. 3. Solvent density around an ion of charge: Functional
mayer liquid, obtained by inversion of the OZ equatiaf®{r), minimization resultgsolid line) compared to MD result&ircles.
c™9r), and c**qr) (solid, dashed, and dot-dashed line, respec-
tively). The inset compares''4r) (dashed lingto the theoretical tremely well reproduced, while the second one is at the cor-
asymptotic limit— gu**4r) (solid line). rect position but is slightly too high and too narrow. The

agreement for the polarization profir) appears even bet-
which is by no means imposedpriori, is shown in the inset  ter, with a correct first peak and correct asymptotic behavior,
for the slowest component™4r), and is seen to be per- and only a slightly too high second peak. Overall, the density
fectly satisfied. Overall, the observed properties of the comfunctional approach is doing extremely well, especially if
putedh andc functions give some confidence regarding theone accounts for the fact that the fields created by a small
convergence of our calculations and the validity of ourparticle of charget e in the solvent are quite high. As can be
Ornstein-Zernike inversion method. expected, the DFT calculations do even better for ions of

smaller chargeéve checked fog=0.1e andg=0.5¢). Note
B. Functional minimization and comparison with MD results again that the density functional theory calculation relies on
two approximationsti) the homogeneous reference fluid ap-
defined by the knowledge of thes, can be minimized for proximgtion andii) the_ truncation of the sphgrical invariant

expansion of the function at the lowest possible order com-

any external fieldV,(r, Q) to yield the equilibrium density . : : . : o
profile and equilibrium excess free energy. We have studiega“bIe with the interaction potential symmetry. Approxima

the special case of a spherical Lennard-Jones particle, wi lon (i), based on an expansion of the particle density around

the same parametets e as the solventso roughly a diam- he homogeneous densipy, is not expected to work for
eter of 3 A), and carrying a chargeq at its center. This strong density or orientational gradients, although it has

lut laced at th ter of bic b fside 36.2 Aproved to work in particular in the first solvation shell where
\?vci)tﬁ € Wreildei) a(ée r?d re Cenngirtio na Cl_JI_h'C foﬁ Oti Srl1 ? .rr the density is far from being homogeneous. The validity of
sponcﬁ)i(ra]gotocthizusysateymc?/vas gissc.retizz d uor? ; ;wgg. € the second approximation is hard to assegsiori and can
dimensional grid and minimized with respectrigr) and the only be justified by the results. The approximation seems fine

_ . B ; in the present case, although probably responsible for the
averaged orientatiorf2(r) =P(r)/pn(r). Our experience discrepancies observed in the second peak. It should be

shows that for the present funct!onal, as we]l as fOF the[ested also for solutes of different symmetries, dipoles, and
closely related electrpstatlc _polarlzatlon densny_functhnalsma” molecules of arbitrary shape. We are presently in this
used in Ref[3], a grid spacing of roughly 2 points/A is rocess
sufficient to yield smooth and converged densities arountﬁ) '
solutes of molecular size.
The convolution integral appearing in E¢L2) for the
excess free energy is evaluated using fast Fourier transform
techniques, and the minimizations are carried out with a con-
jugate gradient scheme. The minimization routine is con-
straint to preserve the total number of particles and to avoid
unphysical negative particle densities. The starting point for
the minimization is a homogeneous densityand zero po-
larization.
In Figs. 3 and 4, we display the radial particle density and
the radial polarization density around an ion of charge
obtained by minimization. The two quantities are compared 0 4 8 12
to the corresponding ones computed with the same box size r )
and same number of particles by molecular dynamics simu-
lations. Forn(r), it can be seen that the first peak is ex- FIG. 4. Same as Fig. 3 for the radial polarization density.

The functional defined by Eq$25)—(27) being now well

P(r)

031206-6



DENSITY FUNCTIONAL THEORY OF SOLVATION INA.. .. PHYSICAL REVIEW E66, 031206 (2002

0 validity was tested on the solvation properties of simple
spherical solutes in a dipolar solvent. When compared to

3 -100 molecular dynamics, the results of the functional minimiza-
E tion turn out to be very encouraging. Since we have already
2 00 develope_d the methodolog_y for r_epreser_lting and minimizing
- the functional on a three-dimensional grid around the solute,
3; with no symmetry assessment, we are planning to continue
5 —-300 our approach for solutes of more complex shape in the same
dipolar solvent, as well as in more realistic solvent models

_4000 reproducing the properties of liquid water, in terms of qua-

drupolar [17,33 or higher-order multipolar interactions

q () [40,41].
FIG. 5. Electrostatic solvation energy of an ion of chacgm

the Stockmayer solvent: Functional minimizatigcircles com-

pared to MD resultstriangles. We are grateful to Smastien Phan for helping us to derive
the dipolar fluid ideal free-energy functional described in the

Finally, since our main motivation is to be able to esti- Appendix, and to Martin-Luc Rosinberg and Aliea Perera

mate solvation energies, we display in Fig. 5 the electrostati¢or helpful and pleasant discussions. R.R. has benefited from

solvation free energy of ions of different charges, computedhe support of a European Marie Curie Grant.

either by direct functional minimization at each valuef

[and subtraction of the neutral Lennard-Jones atom solvation

free energyF(q=0)], or by molecular dynamics using the APPENDIX: THE DIPOLAR FLUID FREE-ENERGY
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thermodynamic integration formula FUNCTIONAL
o Accounting for the definition of the variableyr) and
AFeI(q):f dé&(Ve (£)), (33 P(r) in Egs.(22),(23), the expansion of the function in Eq.
0

(16) and of the external potential, and the obvious symmetry
requirement thaf d€;€;=0, a preliminary integration over
where(V¢ (£)) is the average reaction electrostatic potentialthe angles in the general expressionfQr; and F,,.in Egs.
exerted by the solvent at the center of the ion for a chargé6) and (12) yields readily the reduced expressions given in
g=¢£. In practice, a discrete increment of charge oeOnlas  Egs. (26) and (27).
employed to run a series of MD simulations and compute the The derivation of the ideal part of the functional is a more
integral in Eq.(33). The functional minimization was per- subtle task due to the nonlinear tep(r,Q)In p(r,Q). We
formed for the same set of charges. Again, one can see inegin by posing
Fig. 5 that the DFT calculations do extremely well. As can be
expected, the agreement with MD is perfect for small p(r,Q)=n(r)a(r,Q), (A1)
charges(and thus small fields but slightly degrades for
higher charges. The relative error reache$8% for q= - . .
+ge. Again, ?he results are encouraging and the testqneeds here.a(r,.(_)) denotgs the co'nd|.t|onal probability dens[ty for
be extended to more complex solutes. the orientations at fixed, satisfying/d€a(r,€)=1. With
this definition, the ideal term in E@5) can be separated into

a density and an orientational contribution:
V. CONCLUSIONS AND PERSPECTIVES

The position- and angle-dependent direct correlation func- 1
tion is the key quantity entering in the density functional Fialn.P1=5 fdr
theory description of inhomogeneous molecular fluids sub-
mitted to external potentials. In the homogeneous reference
fluid approximation, this function is approximated by that of
the homogeneous fluid of equal chemical potential, thus in
the absence of any external perturbation. We have shown in
this paper that, at least for dipolar fluids, the homogeneous ) )
direct correlation function can be inferred to a good approxi-//& Now use the fact that the formal solution jefr,€) is
mation by first computing “exact” position and angular two- KnoWn at equilibriun{Eq. (13)] so that one can calculate the
body correlations using MD or MC simulation methods, andOriéntational integral in the second term &f; above. Per-
then inverting the Ornstein-Zerike equation. To our knowl-forming the angle integration in the exponent of EL) in
edge, this is the first time that this approach has proved to b€ Same way as was done 8, and Fey, one gets
possible and valuable for a polar fluid with long-range inter-
actions. The computed function was then injected into the n(r)e(r,Q)=psexd — BP(r)]exd BpL-E(r)],
definition of a solvent free-energy density functional, and its (A3)

n(r)ln

n(r)
r(]—o)—n(r)+n0

+f drn(r)f dQa(r,Q)In[47a(r,Q)].

(A2)
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where the total potentiaP(r) and total electric field(r) where £ “1(x) is the inverse of£(x) and Q(r)=|Q(r)].
are the sums of the corresponding external and excess quadmnjecting these relations into the expressigA5) for
tities. Integrating oveK gives first a(r,€), and then performing the angle integration in Eq.
(A2) yields the final expression for the ideal free energy
sin BpE(r)] iven in Eq.(25), with Q(r)=P(r)/pn(r).
n(r)=pg exp[—,é’d)(r)]W (A4) ? Note thgt the derivatic()n)abo(vg ig d(021e for the equilibrium
density, but that in Eq(25) we make the crucial assumption
and thus that the functional form can be extended to polarization
BPE(T) fields which are out of equilibrium. This is a reasonable as-
pe(r sumption sincdi) the functional does yield a minimum cor-
sinf BpE(r)] eXHLAPE(N)- Q] (AS) responding to the correct equilibrium density gl its lin-
earization for small polarization fields yields the correct
with E(r)=|E(r)|. Next computing the averaged orientation electrostatic limit, namely,
at fixedr, Q(r)=[dQQa(r,Q) yields P12

20 FalnPI= [ drsoos (n9)
E(r)’ (A6)

a(r,Q)=

Q(r)=L(BpE(r)) =~
where ay=8p?/3 is the usual equivalent polarizability of a
where£(x) = coth)— 1/x is the Langevin function. One can dipole p at the temperatur8~*. One recognizes the expres-

deduce that}(r) is parallel toE(r), and that sion for the polarization free energy in a medium with local
electric susceptibilityy(r) = agn(r).
BPE(r)=L"1(Q(r)), (A7) Finally, collecting the different terms, and performing the
. angular integration for the constraint term also, yields the
BpE(r) = L77((r)) ) A8) final expressions in Eq$24)—(27), with the same definition
Q(r) ’ of the solvent excess chemical potentief*.
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